Interpreting predictive maps of disease: highlighting the pitfalls of distribution models in epidemiology.
نویسندگان
چکیده
The application of spatial modelling to epidemiology has increased significantly over the past decade, delivering enhanced understanding of the environmental and climatic factors affecting disease distributions and providing spatially continuous representations of disease risk (predictive maps). These outputs provide significant information for disease control programmes, allowing spatial targeting and tailored interventions. However, several factors (e.g. sampling protocols or temporal disease spread) can influence predictive mapping outputs. This paper proposes a conceptual framework which defines several scenarios and their potential impact on resulting predictive outputs, using simulated data to provide an exemplar. It is vital that researchers recognise these scenarios and their influence on predictive models and their outputs, as a failure to do so may lead to inaccurate interpretation of predictive maps. As long as these considerations are kept in mind, predictive mapping will continue to contribute significantly to epidemiological research and disease control planning.
منابع مشابه
تعیین آستانۀ بهینۀ حضور در مدلهای پیشبینی پراکنش گونههای گیاهی (مطالعۀ موردی: مراتع منطقۀ نیر استان یزد)
The current study addresses determination of occurrence optimal thresholds of predictive models of plant species distribution in Nir rangelands of Yazd province. Accordingly, after determination of homogeneous units using digital elevation model and geology maps with scale 1:25000, vegetation sampling was carried out using random systematic method via plots which establishment across 3-5 transe...
متن کاملبرآورد حدود پراکنش مکانی گونههای گیاهی با روش شبکۀ عصبیمصنوعی در مراتع غرب تفتان
This study aimed to estimate of spatial distribution scope of plant species and preparation of predictive distribution maps of plant species using Artificial Neural Network (ANN) in Taftan west rangelands of Khash city. To this end, vegetation sampling was carried out by random-systematic method after identification and separation of plant species habitats. In order to sample the soil at each h...
متن کاملModeling of Artemisia sieberi Besser Habitat Distribution Using Maximum Entropy Method in Desert Rangelands
Predictive modeling of habitat distribution of range plant species and identification of their potential habitats play important roles in the restoration of disturbed rangelands. This study aimed to predict the geographical distribution of Artemisia sieberi and find the influential variables in the distribution of A. sieberi in the desert rangelands of central Iran. Maps of environmental variab...
متن کاملPredictive Risk Mapping of Leptospirosis for North of Iran Using Pseudo-absences Data
Leptospirosis is a common zoonosis disease with a high prevalence in the world and is recognized as an important public health drawback in both developing and developed countries owing to epidemics and increasing prevalence. Because of the high diversity of hosts that are capable of carrying the causative agent, this disease has an expansive geographical reach. Various environmental and social ...
متن کاملComparative study of predictive ability of AIDS incidence in HIV positive people using Markov model according to two criteria, WHO and CDC in CD4 cell categorization
Background: The Multi state Markov models have extensively application with categorization of laboratory marker of CD4 cells for evaluation of HIV disease progression. These models with different states result in different effects of covariates and prediction of HIV disease trend. The main purpose of this study was comparison of four and five states models with the three- state in order to sele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Geospatial health
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2014